

PAT4145-00 Application: 6550 70 W

This transformer is especially designed for the popular 6550 tube in Push Pull configuration with 40 % Ultra Linear Taps and an output power of 70 Watts. The primary impedance is 3550 Ohms with a secondary output tap at 5 Ohms. The -3 dB (IW) bandwidth is extremely wide, from 0.5Hz up to 124 kHz and the -3 dB power bandwidth starts at 14Hz. Phase distortion is low. less than 5 degrees up to 100 kHz.

Toroidal Output Transformer for **Tube Amplifiers**

Visit us on the web: www.plitron.com

			()	
Type & Application	:	Plitron / VDV PAT-4145-00		
Primary Impedance	:	Raa = 3.553		$[k\Omega]$
Seconday Impedance	:	RIs = 5		[Ω]
Turns Ratio Np/Ns	:	Ratio = 26.658		[]
Ultra Linear Tapping at	:	tap=40		[%]
1 dB Frequency Range $\left[\text{Hz to KHz} \right]^{(3)}$:	flf = 2.369	fhf = 39.09	
-1 dB Frequency Range [Hz to KHz] ⁽³⁾	:	fl1 = 1.011	fh1 = 77.43	
-3 dB Frequency Range [Hz to KHz] ⁽³⁾	:	fl3 = 0.514	fh3 = 123.923	
Nominal Power ⁽¹⁾	:	Pn = 70		[W]
-3 dB Power Bandwidth starting at	:	fu = 14		[Hz]
Total Primary Inductance ⁽²⁾	:	Lp = 778		[H]
Primary Leakage Inductance	:	lsp = 3		[mH]
Effective Primary Capacitance	:	Cip = 0.6		[nF]
Total Primary DC Resistance	:	Rip = 100		[Ω]
Total Secondary DC Resistance	:	Ris = 0.13		[Ω]
Tubes Plate Resistance per section	:	ri = 4		$[k\Omega]$
Insertion Loss	:	lloss = 0.229		[dB]
Q-factor 2nd order HF roll-off ⁽⁵⁾	:	Q = 0.62		[]
HF roll-off Specific Frequency ⁽⁵⁾	:	Fo = 143.74		[kHz]
Quality Factor ⁽⁵⁾	:	$QF = 2.593 \cdot 10^5$		[]
Quality Decade Factor = $log(QF)^{(5)}$:	QDF = 5.414		[]
Tuning Factor ⁽⁵⁾	:	TF = 0.929		[]
Tuning Decade Factor = $\log(TF)^{(5)}$:	TDF = -0.032		[]
Frequency Decade Factor ^(4, 5)	:	FDF = 5.382		[]

PAT-4145-00

Ratings

- (1): calculated under the conditions of balancing the DC-currents and the AC-anode voltages of the powertubes driving the transformer
- maximum value, measured over secondary, transfered to primary (2):
- (3): calculation at 1 mWatt in Rls; ri and Rls are pure Ohmic
- defined as $FDF = \log(fh3/fl3) = number of frequency decades transfered$ (4):
- (5): ir. Menno van der Veen; Theory and Practise of Wide Bandwidth Toroidal Output Transformers; preprint 3887, 97th AES Convention San Fransico
- (C): Copyright 1994 Vanderveen; Version 1.7; design date November 16, 1994

Special Toroidal **Output Transformer** Designs

